Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
نویسندگان
چکیده
Deterministic Aperiodic (DA) arrays of gold (Au) nanoparticles are proposed as a novel approach for the engineering of reproducible surface enhanced Raman scattering (SERS) substrates. A set of DA and periodic arrays of cylindrical and triangular Au nanoparticles with diameters ranging between 50-110 nm and inter-particle separations between 25-100 nm were fabricated by e-beam lithography on quartz substrates. Using a molecular monolayer of pMA (p-mercaptoaniline) as a Raman reporter, we show that higher values of SERS enhancement factors can be achieved in DA structures compared to their periodic counterparts, and discuss the specific scaling rules of DA arrays with different morphologies. Electromagnetic field calculations based on the semi-analytical generalized Mie theory (GMT) fully support our findings and demonstrate the importance of morphology-dependent diffractive coupling (long-range interactions) for the engineering of the SERS response of DA arrays. Finally, we discuss optimization strategies based on the control of particles sizes and shapes, and we demonstrate that spatially-averaged SERS enhancement factors of the order of approximately 10(7) can be reproducibly obtained using DA arrays of Au nano-triangles. The ability to rigorously design lithographically fabricated DA arrays of metal nanoparticles enables the optimization and control of highly localized plasmonic fields for a variety of chip-scale devices, such as more reproducible SERS substrates, label-free bio-sensors and non-linear elements for nano-plasmonics.
منابع مشابه
Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing.
The accurate and reproducible control of intense electromagnetic fields localized on the nanoscale is essential for the engineering of optical sensors based on the surface-enhanced Raman scattering (SERS) effect. In this paper, using rigorous generalized Mie theory (GMT) calculations and a combined top-down/bottom-up nanofabrication approach, we design and experimentally demonstrate approximate...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملAssembly of Silver Nanocube Clusters and Tuning of Surface Plasmon Resonances for Surface- Enhanced Raman Scattering
Title of Document: ASSEMBLY OF SILVER NANOCUBE CLUSTERS AND TUNING OF SURFACE PLASMON RESONANCES FOR SURFACEENHANCED RAMAN SCATTERING Seung Yong Lee, Doctor of Philosophy, 2012 Directed By: Professor Oded Rabin, Department of Materials Science and Engineering To prepare surface-enhanced Raman scattering (SERS) substrate with metal nanoparticle clusters, various deposition methods were used: (1)...
متن کاملElectromagnetic coupling and plasmon localization in deterministic aperiodic arrays
In this paper we explore the potential of one-dimensional and two-dimensional deterministic aperiodic plasmonic arrays for the design of electromagnetic coupling and plasmon-enhanced, sub-wavelength optical fields on chip-scale devices. In particular, we investigate the spectral, far-field and near-field optical properties of metal nanoparticle arrays generated according to simple deterministic...
متن کاملNanoparticle-decorated nanocanals for surface-enhanced Raman scattering.
The surface-enhanced Raman scattering (SERS) effect is considered important for fast detection of characteristic ‘‘fingerprint’’ signatures of analytes. In the SERS effect, a substantial Raman enhancement arises on localized spots (‘‘hot spots’’) in metallic nanostructures owing to strong local electromagnetic fields associated with the surface plasmon resonances of metal nanostructures. SERS o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2009